

SERVIZIO IDRICO INTEGRATO: INNOVAZIONE E NEUTRALITÀ ENERGETICA OBIETTIVO SOSTENIBILITÀ

20.09.2024 – LIFE SOURCE HOTEL, BERGAMO

Neutralità energetica degli impianti di depurazione a scala di bacino: simulazione di scenari tecnologici Risultati preliminari

Gianni Andreottola

Università degli Studi di Trento

Professore ordinario

SERVIZIO IDRICO INTEGRATO:

INNOVAZIONE E NEUTRALITA' ENERGETICA

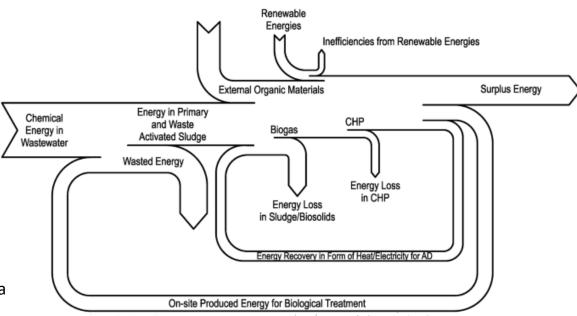
OBIETTIVO SOSTENIBILITA'

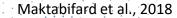
20.09.2024

Giovanni Barison

Università degli Studi di Trento

LIFE SOURCE HOTEL, BERGAMO

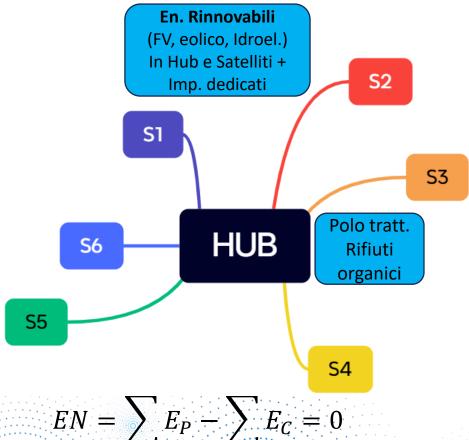

Studente LM Ingegneria per l'Ambiente ed il Territorio


Energy Neutrality a scala di singolo impianto

La ricerca della neutralità energetica a scala di impianto è oggetto di ricerche ed applicazioni da diversi anni, finalizzati a:

- Riduzione del consumo energetico nei processi di trattamento delle acque reflue
- Aumentare il recupero energetico dai fanghi
- Aggiungere sufficienti fonti esterne di energia rinnovabile (Rifiuti organici, FV, ecc.)

Esistono singoli impianti virtuosi che hanno raggiunto la neutralità energetica, ma manca una gestione a livello di «bacino».


Energy Neutrality a scala di bacino

La ricerca della neutralità energetica a scala di bacino richiede:

- Riduzione dei consumi energetici in linea acque ed in linea fanghi nei singoli impianti (Satelliti ed Hub) con specifici interventi mirati
- Fornitura di energia chimica all'impianto Hub mediante trasferimento di «fanghi primari addensati» da N impianti satellite del bacino
- Aggiunta di sufficienti fonti esterne di energia rinnovabile (biomasse organiche, FV, eolico, Idroelettrico ecc.) negli impianti e/o in Poli dedicati nel territorio del bacino per raggiungere la neutralità

Tutti questi interventi richiedono un **piano energetico** e di interventi a scala di bacino

Caratteristiche delle tecnologie identificate

- 1) Già applicate a scala reale su impianti di depurazione a fanghi attivi con filiera convenzionale
- 2) Minimi adeguamenti impiantistici nel retrofitting
- 3) Prestazioni validate a scala reale, in termini di riduzione dei consumi energetici e/o di incremento in produzione di biogas.
- 4) Adeguata flessibilità gestionale
- 5) Miglioramento o alterazione minima della qualità allo scarico

Attenzione: CAPEX e ROI non sono stati tenuti in considerazione in questa fase dello studio, mentre OPEX solo in termini di consumi energetici

Step del progetto di ricerca

- Definizione della filiera tecnologica su impianti «satelliti» convenzionali
- Definizione della filiera tecnologica sull'impianto «HUB», dotato di digestione anaerobica.
- Simulazione matematica con software BioWin dell'impatto energetico sull' impianto satellite e sull'HUB, assunti come «benchmark» (con dati gestionali da impianti a scala reale)

Tecnologie individuate ed applicazione agli impianti satelliti e/o all'HUB

IMPIANTI SATELLITI

- RBF (Rotating Bel Filter): Linea acque (pretrattamento)
- APR (Alternating Phase Reactor) Aerazione intermittente: Linea acque (comparto biologico) e Linea fanghi (digestione aerobica)

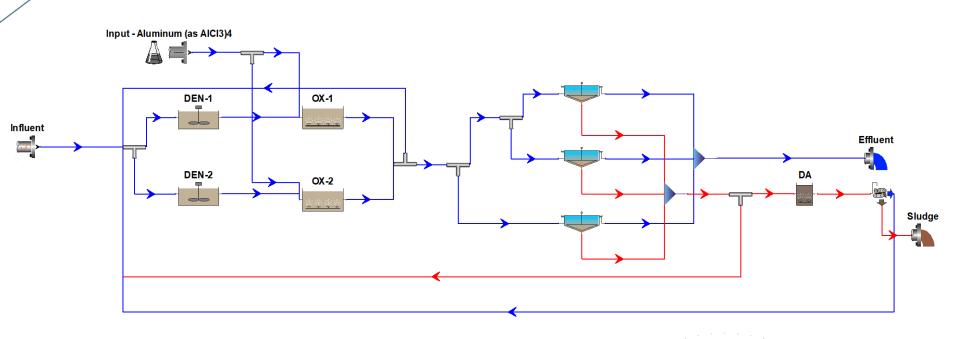
IMPIANTO HUB

- MABR (Membrane Aerobic Biofilm Reactor): Linea acque (comparto biologico anossico)
- APR (Alternating Phase Reactor): Linea acque (comparto biologico aerato)
- CAD (Cascade Anaerobic Digester): Linea fanghi (digestori anaerobici)

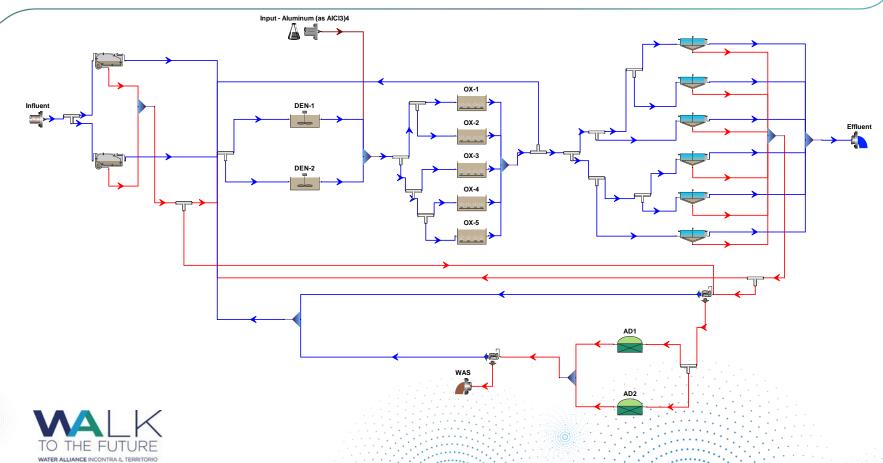
Baseline energetica

Satellite

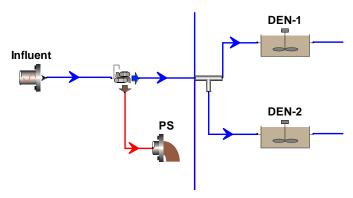
	u.m.	Valore	
Consumo energetico	kWh/d	3849	
Portata trattata	m^3/d	8790	
Abitanti equivalenti	AE	22048	
Consumo specifico	kWh/(AE y)	63.7	
Consumo specifico	kWh/m^3	0.44	


Hub

	u.m.	Valore	
Consumo energetico	kWh/d	15700	
Portata trattata	m^3/d	50665	
Abitanti equivalenti	AE	108933	
Consumo specifico	kWh/(AE y)	52.6	
Consumo specifico	kWh/m^3	0.31	



Impianto Satellite


Impianto Hub

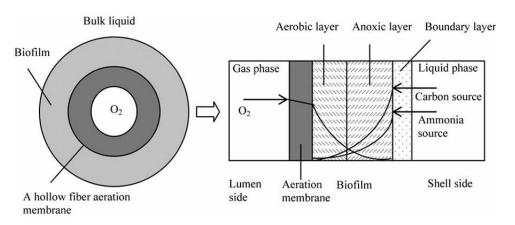
Rotating Belt Filtration (RBF)



Fonte: Franchi e Santoro, 2015

RBF - Performance

		СЕРТ		
Rimozione BOD	15-30%	Fino a 40%		
Rimozione SST	30-60%	Fino a 70%		
Consumo energetico	64 kWh/d (Inflow 36000 m^3/d)			
Riduzione consumo energetico	20-25%			


Fonte: Franchi e Santoro, 2015



Fonte: Paulsrud et al., 2014

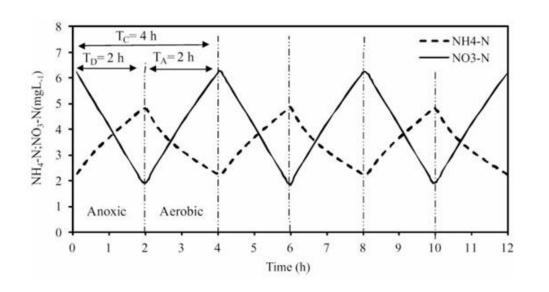
Membrane Aerated Biofilm Reactor (MABR)

Fonte: Liu et al., 2008 Fonte: Jiao et al, 2017

MABR - Performance

MABF	CAS			
OTE	30-70%	4-30%		
Efficienza di aerazione	5-20 kgO2/kWh	1.0-4.6 kgO2/kWh		

MABR					
Riduzione di produzione fanghi secondari	20-50%				
Riduzione del consumo energetico di aerazione	50-80%				


Feed Anoxic MABR zone Aerobic zone WAS

Fonte: Jia et al., 2023

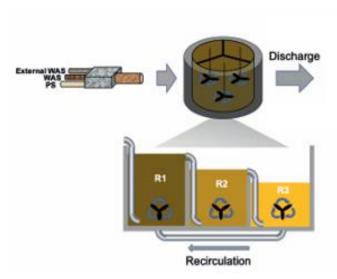
Fonte: Hanqui et al.,2021

APR - Aerazione Intermittente

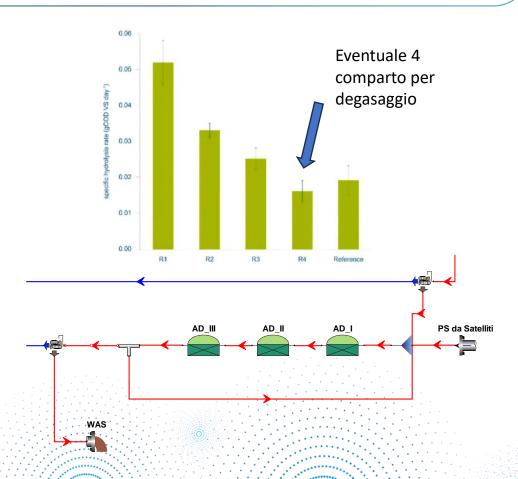
Fonte: Hanhan et al., 2014

APR- Performance

Soglie NH4-N, NO3-N	3.0 mg/L 5.0 mg/L
Riduzione consumo energetico di aerazione	20-30%
Riduzione chemicals	15-20%
Riduzione fango secondario prodotto	10-20%


In condizioni invernali, tramite brevi periodi anossici è possible favorire la crescita di PAO (Phosphorous Accumulating Organisms), aumentando la rimozione biologica di TP e riducendo l'utilizzo di chemicals.

Fonte: Ferrentino et al.,2018



Cascade Anaerobic Digesters (CAD)

Fonte: Guo et al., 2021

Regime digestione	Mesofilo
SRT [d]	6-15 (tipico 7.5 d per i primi 3 comparti)
Rapporto di ricircolo	5-10%
Aumento in	15-25%
produzione di biogas	(con capacità
(e rimozione SV)	invariata)
Aumento di potenzialità	≈50%

Fonte: Guo et al., 2021 Guo et al., 2024 Fonte: presentazione CAD

Stima performance energetica impianto satellite (da dati applicativi a scala reale)

Impianto satellite BENCHMARK	u.m.	BASE	%	APR L. acque		APR (L.A.+L.F.)		RBF+ APR (L.A.+L.F.)	
AE		22048		22048		22048		22048	
Consumo totale	kWh/anno	1,404,845	100%	1,107,720	100%	1,016,460	100%	913,171	100%
Consumo soffianti+Ricircolo MA	kWh/anno	613,200	44%	316,075	29%	316075	31%	237056.3	26%
Consumo digestione aerobica	kWh/anno	188,340	13%	188,340	17%	97080	10%	72,810	8%
Consumo specifico	kWh(AE y)	63.7		50.2	-21%	46.1	-28%	41.4	-35%
Consumo totale proc. Biologici	kWh/anno	801,540	0%	504,415	-37%	413,155	-48%	309,866	-61%

Lo studio è on-going, ma restate sintonizzati!

Grazie per l'attenzione.

Il progetto di ricerca è finanziato da ENEA nell'ambito del Piano Triennale di Realizzazione 2022-2024 della Ricerca sul Sistema Elettrico Nazionale

[1] Mamais, D., Noutsopoulos, C., Dimopoulou, A., Stasinakis, A., Lekkas, T.D., 2015. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci. Technol. 71, 303–308. http://dx.doi.org/10.2166/wst.2014.521.

[2]Franchi, Alessandro & D., Santoro. (2015). Current status of the rotating belt filtration (RBF) technology for municipal wastewater treatment. Water Practice and Technology. 10. 319-327. 10.2166/wpt.2015.038.

[3] B. Paulsrud, B. Rusten and B. Aas, 2014, Increasing the sludge energy potential of wastewater treatment plants by introducing fine mesh sieves for primary treatment, Water Science & Technology Vol 69 No 3 pp 560–565.

[4] T. Li, J. Liu, and R. Bai, "Membrane Aerated Biofilm Reactors: A Brief Current Review," 88 Recent Patents Biotechnol., vol. 2, pp. 88–93, 2008.

[5] Jiao, Y. & Li, Yi & Liu, Q. & Zhang, Kaisong. (2017). Treatment effect of membrane-aerated biofilm reactor (MABR) on polluted surface water. Chinese Journal of Environmental Engineering. 11. 85-92. 10.12030/j.cjee.201508131.

[6] Huanqi He, Brett M. Wagner, Avery L. Carlson, Cheng Yang, Glen T. Daigger; Recent progress using membrane aerated biofilm reactors for wastewater treatment. *Water Sci Technol* 1 November 2021; 84 (9): 2131–2157. doi: https://doi.org/10.2166/wst.2021.443

[7] Jia Li, Zhiwei Wang, Yayi Wang, Integrating membrane aerated biofilm reactors with biological nitrogen removal processes: A new paradigm for achieving sustainable wastewater treatment plants, Chemical Engineering Journal, Volume 475, 2023, 146025, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2023.146025.

[8] Oytun Hanhan, Güçlü Insel, Nevin Ozgur Yagci, Nazik Artan & Derin Orhon (2011) Mechanism and design of intermittent aeration activated sludge process for nitrogen removal, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 46:1, 9-16, DOI: 10.1080/10934529.2011.526073

[9] Ferrentino, R., Langone, M., Vian, M., & Andreottola, G. (2018). Application of real-time nitrogen measurement for intermittent aeration implementation in a biological nitrogen removal system: performances and efficiencies. *Environmental Technology*, *40*(19), 2513–2526. https://doi.org/10.1080/09593330.2018.1444102

[10] D. Fernández-Polanco, E. Aagesen, M. Fdz-Polanco, S.I. Pérez-Elvira, Comparative analysis of the thermal hydrolysis integration within WWTPs as a pre-, inter- or post-treatment for anaerobic digestion of sludge, Energy, Volume 223, 2021, 120041, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2021.120041.

[11] Ferrentino, R.; Langone, M.; Fiori, L.; Andreottola, G. Full-Scale Sewage Sludge Reduction Technologies: A Review with a Focus on Energy Consumption. *Water* **2023**, *15*, 615. https://doi.org/10.3390/w15040615

[12] Hongxiao Guo, Margreet J. Oosterkamp, Fabio Tonin, Alexander Hendriks, Revathy Nair, Jules B. van Lier, Merle de Kreuk, Reconsidering hydrolysis kinetics for anaerobic digestion of waste activated sludge applying cascade reactors with ultra-short residence times, Water Research, Volume 202, 2021, 117398, ISSN 0043-1354, https://doi.org/10.1016/j.watres.2021.117398.

[13] Hongxiao Guo, Maaike McIntyre, André Visser, Hans Kuipers, Jules B. van Lier, Merle de Kreuk, Performance and microbial community composition of full-scale high-rate cascade sludge digestion system via pie-shaped reactor configuration, Bioresource Technology, Volume 402, 2024, 130771, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2024.130771.

[14] https://www.youtube.com/watch?v=LvxTHzbW314&list=PLUYuCg8xKewbHsQqcM8tcelgyDBZZm5Hl&index=3&ab_channel=RoyalHaskoningDHV

